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Intended Learning Outcomes

I Knowledge
I Understand the characteristics that distinguish high frequency circuit design from low

frequency circuit design
I Be familiar with some basic EM theory and understand the importance of Maxwell’s

equations.
I Understand some important properties of materials at RF frequencies (Permittivity and

Permeability)
I Understand that parasitic reactances associated with familiar lumped element

components become more pronounced at radio frequencies and will significantly affect
their impedance as a function of frequency, and that equivalent circuit models must
therefore be used to adequately represent such components.

I Revise the concept of quality factor, Q, for components and for the components when
used in resonant circuits, and specifically its application to microwave resonators.

I Become acquainted with the concept of maximum power transfer.
I Skills

I Be able to calculate the inductance of a cylindrical wire.
I Be able to design a single layer spiral inductor for a given inductance.
I Be able to calculate the Q of common parallel and series RLC circuits.
I Be able to determine the Q of a generic microwave resonator, based on return loss

measurements.
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What are microwaves?

1. The term microwave commonly refers to the region of the electromagnetic
spectrum from 1 GHz to 30 GHz (or 30 centimetres to 1 centimetre wavelengths).

2. The electrical properties of electronic components and interconnections depend
upon their physical Size and Geometry in relation to the Wavelength of the signal
being processed.

3. The physical Distance between components (i.e. the length of connecting wires)
also becomes important when these distances are comparable to the wavelength
of the signal. At microwave frequencies, connecting wires need to be considered
as Transmission Lines, where Voltage and current at any instant are different at
different positions along the line.

4. The behaviour of traditional passive circuit elements (R, L, C) departs from their
ideals at microwave frequencies due to Parasitic effects.

5. At microwave frequencies reactive components (L and C) are often synthesised
using transmission line sections.
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The importance of radio frequency electronics
Many microwave circuit applications relate to portable, battery operated equipment,
with the modern cellular phone handset being the most obvious example. The
microwave design engineer will therefore be faced with a number of challenges and
trade-offs, aside from the task of making the microwave circuit behave as intended.
Figure 1 shows some of these trade-offs.
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Figure 1 : RF design constraints and trade-offs
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Electromagnetism basics

Let i, j, k be the corresponding basis of unit
vectors. The divergence of a continuously
differentiable vector field E = Ui + Vj + Wk
is equal to the scalar function:

∇ · E =
∂U
∂x

+
∂V
∂y

+
∂W
∂z

(1)

So ∇ · E, being a scalar, simply quantifies
the amount of variation there is in the field,
E. By contrast, ∇× E (pronounced ’curl E’)
measures how much E ’curls around’, or
how much it changes in the perpendicular
directions. x

y

z

E or H

Figure 2 : Three dimensional coordinate space

This function is formally defined, for the vector field E = Ui + Vj + Wk, as:

∇× E =

(
∂Ez
∂y
−
∂Ey
∂z

)
i +

(
∂Ex
∂z
−
∂Ez
∂x

)
j +

(
∂Ey
∂x
−
∂Ex
∂y

)
k (2)
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Maxwell’s Equations

∇ · E =
ρ

ε0
(3)

∇ · B = 0 (4)

∇× E = −
∂B
∂t

(5)

∇× B = µ0

(
J + ε0

∂E
∂t

)
(6)

we can put the four equations of (3) to (6), in context
as follows :

1. Equation 3 - (Gauss’s law) : Electric charges
create electric fields where the strength of the
field is determined by the distance from the
charge.

2. Equation 4 - (Gauss’s law of magnetism) :
There are no magnetic monopoles - the
magentic field flux through any Gaussian
surface sums to zero.

3. Equation 5 - (Faraday’s Law) : A change in
magnetic field strength induces a change in
electric field strength.

4. Equation 6 - (Ampere’s Law plus correction) :
Faraday’s Law reversed, plus electric current
also creates magnetic fields.
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Electromagnetism basics

By means of these four equations, Maxwell demonstrated that electric and magnetic
forces are two complementary aspects of a single phenomenon now known as
electromagnetism.

In a free space region with no charges (ρ = 0) and no currents ( J = 0), the equations
(3) to (6), reduce to:

∇ · E = 0 (7)
∇ · B = 0 (8)

∇× E = −
∂B
∂t

(9)

∇× B = µ0ε0
∂E
∂t

(10)
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Electromagnetism basics

Taking the curl (∇×) of the curl equations, and applying a theorem in vector calculus
known as the ’curl of the curl’ identity, (i.e. ∇× (∇× A) = ∇(∇ ·A)−∇2A), we obtain
the following ’wave equations’ in three dimensions:

µ0ε0
∂2E
∂t2
−∇2E = 0 (11)

µ0ε0
∂2B
∂t2
−∇2B = 0 (12)

For simplicity, let us consider, say, equation (11) in one dimension only, so for the x
dimension we can write:

∂2E
∂x2

= µoε0
∂2E
∂t2

(13)

E and B are mutually perpendicular to each other and the direction of wave
propagation, and are in phase with each other.

The changing magnetic field creates a changing electric field through Faraday’s law. In
turn, that electric field creates a changing magnetic field through Maxwell’s addition to
Ampere’s law (equation 6). It is this perpetual cycle that allows a self-sustaining
electromagnetic wave to propagate through space.
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Electromagnetism basics

Let us now look for a solution to (13) in the form of a sinusoidal wave, with speed ν and
wavelength λ. Such a wave can be described by the expression:

E = E0 sin
(
2π x − νt

λ

)
(14)

Differentiating (14) twice with respect to x and t separately, we get

∂2E
∂x2

= −Eo

(2π
λ

)2
sin
(
2π x − νt

λ

)
(15)

and

∂2E
∂t2

= −Eo

(2πv
λ

)2
sin
(
2π x − νt

λ

)
(16)
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Electromagnetism basics

Substituting (15) and (16) back into the wave equation, (14), we see that we have a
solution to (13), provided that:

ν2 =
1

µoεo
(17)

Using the known values of the physical constants µ0 = 4π × 10−7Hm−1 and
ε0 = 8.854187817× 10−12Fm−1 we can use (17) to calculate the velocity of
electromagnetic wave propagation through a vacuum as:

ν = 2.99792458 · · · × 108 m s−1 (18)

Maxwell observed that this velocity happens to be the same as the experimentally
measured speed of light, c, and thereby concluded that light is itself an electromagnetic
wave.
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Electromagnetism basics

In materials with relative permittivity εr and relative permeability µr , the speed of the
electromagnetic wave becomes:

νp =
1

√
µ0µrε0εr

(19)

Which is always less than the speed of light in a vacuum since both µr and εr are
always greater than unity for real materials.

The wave described by (11) and (12) propagates through space in the positive z
direction and is called a uniform plane wave, since it has uniform (constant) properties
in a plane perpendicular to the direction of propagation. For the uniform plane wave
described by (11) and (12) the plane of uniformity is the xy plane, since the direction of
propagation is the z direction.
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Electromagnetism basics

I The velocity referred to in (17) called the phase velocity. This is not the velocity of
any physical entity, but the velocity at which an observer would have to move to
see always a constant phase.

I It is instructive to consider the ratio of electric and magnetic field magnitudes,
which has the units of Ω, i.e. :

Z0 =
E
H

= µ0c0 =

√
µ0
ε0

=
1

ε0c0
(20)

With the free space values of µo and εo we can calculate the impedance of free space
as being approximately 376.73031 · · ·Ω.
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Resistivity

Resistivity is a fundamental property of material which defines how much the material
impedes the movement of electrons through it. Resistance depends on the geometry of
the particular sample, but Resistivity does not.

Consider the resistance of a cylindrical wire made of a conducting material as shown in
figure 3.

We intuitively understand that the
resistance will increase with the length of
the wire, l, and that thinner wires have
higher resistance that thicker wires. We
can therefore infer that :

R ∝ `

A
(21)

Where A = πr2 is the cross-sectional area
of the wire or radius r. It turns out that the
constant of proportionality in (21) is the
resistivity. We can then write (21) as :

R = ρ
`

A
(22)

r

l

Figure 3 : Resistance of a cylindrical wire

© Poole-Darwazeh 2015 Lecture 1 - Introduction Slide15 of 55



Resistivity of common materials

Table 1 : Resistivity of typical materials (Ωm) at 300K

Material Resistivity Classification
Silver 1.59× 10−8 Conductor
Copper 1.68× 10−8 Conductor
Gold 2.24× 10−8 Conductor
Aluminium 2.65× 10−8 Conductor
Tungsten 5.65× 10−8 Conductor
Iron 9.71× 10−8 Conductor
Platinum 10.6× 10−8 Conductor
Nichrome (Ni,Fe,Cr alloy) 100× 10−8 Conductor
Germanium(intrinsic) 4, 700 Semi-Conductor
Silicon(intrinsic) 2.3× 107 Semi-Conductor
Gallium Arsenide (intrinsic) 108 Semi-Conductor
Glass 1011 to 1015 Insulator
Quartz(fused) 7.5× 1017 Insulator
PTFE (Teflon) 1023 to 1025 Insulator
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The Skin Effect

I There are a number of peculiar
physical effects which alter the
behaviour of common materials and
components as the frequency of
operation increases.

I One of the most important is the Skin
Effect which describes the fact that
alternating current tends to
accumulate near the surface of a solid
conductor at higher frequencies.

I This effectively limits the
cross-sectional area of the conductor
with a corresponding increase in the
resistance of that conductor above
what would be expected at DC.

δ D

Figure 4 : The skin effect
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The Skin Effect

As the frequency increases, the current density in a conductor, J, decreases
exponentially from its value at the surface JS according to the depth d from the surface
according to the following relationship :

J = JS e−d/δ (23)

where δ is the skin depth. The skin depth is thus defined as the depth below the
surface of the conductor at which the current density has fallen by a factor of 1/e
(about 0.37) of JS. In normal cases the skin depth can be approximated by[6]:

δ =

√
2ρ

ωµrµ0
(24)

Or alternatively:

δ =
1√

πfµrµ0σ
(25)

where ρ = 1/σ is the resistivity of the conductor and ω is the angular frequency.

© Poole-Darwazeh 2015 Lecture 1 - Introduction Slide18 of 55



The Skin Effect

A long cylindrical conductor such as the wire shown in figure 4, having a diameter D
large compared to the skin depth, δ, will have a resistance approximately that of a
hollow tube with wall thickness δ carrying direct current. Using a material of resistivity ρ
we then find the AC resistance of a wire of length l to be :

R ≈ ρl
π(D − δ)δ

(26)

In case δ << D, (26) can be approximated by :

R ≈ Lρ
πDδ

(27)

Table 2 : Skin depth of common materials

Material f=60Hz f=1MHz f=1GHz
Copper 8.61mm 0.067mm 2.11 µm
Iron 0.65mm 5.03 µm 0.016 µm
Sea water 32.5m 0.25m 7.96 mm
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Relative Permeability

Permeability is a physical constant that defines how much a material responds to a
magnetic field. Permeability is defined as :

µ =
B
H

(28)

where B is the magnitude of the flux density, and H is the magnitude of the magnetic
field strength. The units of permeability are Henries/meter. The permeability of a
vacuum is denoted by µo and has the value 4× 10−7, (approximately
1.25663706× 10−6).

Most materials have permeability very close to that of a vacuum. Materials that contain
iron, chrome, or nickel, however, will have a higher relative permeability (µr ). Relative
permeabilities of typical materials are shown in table 3.

Permeability is an important determinant of skin depth, since the higher the relative
permeability, the less an electromagnetic wave will penetrate into the material.
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Relative Permeability

Table 3 : Relative permeabilities of typical materials

Material Type Relative permeability (µr )
Silver Diamagnetic 0.99998
Lead Diamagnetic 0.999983
Copper Diamagnetic 0.999991
Water Diamagnetic 0.999991
Vacuum Nonmagnetic 1
Air Paramagnetic 1.0000004
Aluminum Paramagnetic 1.00002
Ferrite(nickel zinc) Ferromagnetic 16 to 640
Cobalt Ferromagnetic 250
Nickel Ferromagnetic 600
Ferrite (manganese zinc) Ferromagnetic 640
Mild Steel (0.2% C) Ferromagnetic 2,000
Iron (0.2% impurity) Ferromagnetic 5,000
Silicon Iron Ferromagnetic 7,000
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Relative Permittivity

I Permittivity refers to the ability of a material to polarize in response to an externally
applied electric field and thereby reduce the total electric field inside the material.
In other words, permittivity is a measure of a material’s ability to transmit (or
"permit") an electric field within it.

I As with permeability, the permittivity generally depends on the frequency of the
applied field. This frequency dependence reflects the fact that a material’s
polarization does not respond instantaneously to an applied field.

I There is a certain delay between the application of the applied field and the
response, which can be represented by a phase difference at a given frequency.
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Relative Permittivity

Table 4 shows the relative permittivity (εr ) of some common materials. The table also
lists something called the loss tangent that will be explained in the following slides.

Table 4 : Relative permittivity (dielectric constant) of typical materials

Material Dielectric constant Loss-tangent*
(εr ) (tan δε)

Vacuum 1.0 0
Teflon 2.1 0.0003
Nylon 2.4 0.0083
Sandy soil (dry) 2.55 0.0062
Silicon Dioxide 3.9 0.001
Thermoset polyester 4.0 0.0050
Paper 3-4 0.0125 - 0.0333
Concrete (dry) 4.5 0.0111
Glass 4 to 7 0.0050
Soda lime glass 6.0 0.02
Alumina 9.0 0.0006
RT/duroid 5870 (microstrip substrate) 2.33 0.0009
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Losses in dielectric and magnetic materials
When a time-varying electric field is applied to a material, the polarization dipoles
inside the material will flip back and forth in response to the field. The finite mass of the
charge carriers has two important consequences:
1. Work has to be done to move them, which means that some of the applied energy

will be ’lost’ in the material.
2. It takes a finite time for these dipoles to move, which means that the polarization

vector will lag behind the applied electric field[3].
The result of this phase lag is that permittivity should be more correctly defined as a
complex number. i.e.:

ε = ε′ − jε′′ (29)

= ε′ − j σ
ω

(30)

Both the real and imaginary parts of (29) are frequency dependent[4], but at lower
frequencies the imaginary part of ε′ is small and is usually ignored.

The real part of (29), ε′, is a measure of how much energy from an external electric
field is stored in the material. The imaginary part of permittivity, ε′′, is called the loss
factor and is a measure of how dissipative or lossy a material is. The loss factor
includes the effects of both dielectric loss and conductivity, σ.
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Wire

I When current is flowing through a wire, a magnetic field is induced around the wire.
I If the magnetic field is forced to expand and contract by changes in the current, a

voltage will be induced in the wire that will tend to oppose the change in current
flow (Faraday’s law).

I This effect manifests itself as a self-inductance.
I A good estimate of the self-inductance of a cylindrical wire can be obtained from

the following empirical formula[1]:

L = 0.002l
[
2.3 ln

(4l
d

)
− 0.75

]
µH (31)

where l = length of wire in cm and d = diameter of the wire in cm.

According to this formula, 5cm of wire of 1 mm diameter will have an inductance of 50
nH, which translates to the rather appreciable reactance of 314Ω at 1 GHz.
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Resistors

L R L

Ca

Cb

Figure 5 : High frequency equivalent circuit of a
typical resistor

ZRequiv =
1

jωCb + 1
j2ωL+ 1

G+jωCa

(32)

where the conductance G = 1/R.

typical values:

R =1kΩ

L =60nH
C =4pF

102 104 106 108 1010

10−1

100

101

102

103

104

105

Frequency (Hz)

|Z
|(

Ω
)

Figure 6 : |Z | vs frequency for a typical resistor
(nominal value: 1kΩ)
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Capacitors

L Rs

Rc

C

Figure 7 : High frequency equivalent circuit of a
typical capacitor

The effective impedance of the circuit in
figure 7 is given by:

ZCequiv = Rs + jωL +
1

Gc + jωC
(33)

Where Gc = 1/Rc .

Typical values:

Rs =0.1Ω

Rc =100kΩ

L =20nH

105 106 107 108 109 1010

10−1

100

101

102

103

104

105

Frequency (Hz)

|Z
|(

Ω
)

Figure 8 : |Z | vs frequency for a typical capacitor
(nominal value: 47pF )
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Inductors

L R

Cs

Figure 9 : High frequency equivalent circuit of a
typical inductor

By inspection the impedance of the
equivalent circuit in figure 9 is:

ZLequiv =
Rs + jωL

1 + jωCs(Rs + jωL)
(34)

Typical values:

Rs =0.05Ω

L =25nH
Cs =0.5pF

106 107 108 109 1010

10−1

100

101

102

103

104

Frequency (Hz)

|Z
|(

Ω
)

Figure 10 : |Z | vs frequency for a typical inductor
(nominal value: 25nH)
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Surface Mount Devices (SMD)

Table 5 : SMD two-terminal component sizes

Identifier Dimensions
Imperial Metric Imperial Metric Power rating

(resistors)
0402 1005* 0.04 × 0.02 in 1.0 × 0.5 mm 0.1W
0504 1210* 0.05 × 0.04 in 1.2 × 1.0 mm 0.1W
0603 1508 0.06 × 0.03 in 1.5 × 0.8 mm 0.1W
0805 2012 0.08 × 0.05 in 2.0 × 1.2 mm 0.125W
1005* 2512 0.10 × 0.05 in 2.5 × 1.2 mm 0.125W
1206 3216 0.12 × 0.06 in 3.2 × 1.6 mm 0.25W
1210* 3225 0.12 × 0.10 in 3.2 × 2.5 mm 0.5W
1812 4532 0.18 × 0.12 in 4.5 × 3.2 mm 0.75W
2512 6332 0.25 × 0.13 in 6.4 × 3.2 mm 1.0W
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Maximum power transfer

I A lot of RF and microwave design
involves moving signal power most
efficiently from one place to another.

I The maximum transfer of signal power
implies that losses in the signal path
should be minimised.

I This requires that the source and load
impedances be matched.

I As a starting point, it is worth briefly
reviewing the DC maximum power
transfer theorem which will be familiar
to the reader from basic circuit theory.

r

R

DC Source
(battery)

V

PL

I

Figure 11 : Maximum power transfer : DC case
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Maximum power transfer

PL = I2R =

(
V

R + r

)2
R (35)

If we consider how load power, PL, changes
with load resistance, R, we can write :

dPL
dR

= V2
[

(R + r)2 − 2R(R + r)
(R + r)4

]
(36)

Load power is maximised when the above
derivative equals 0, i.e. when :

(R + r)2 = 2R(R + r) (37)

Solving (37) yields the familiar condition for
maximum power transfer in the DC case,
namely :

R = r (38)

R

PL

r

Pmax

Figure 12 : Load power versus load resistance :
DC case
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Maximum power transfer

When operating at radio frequencies we
need to take into account the reactive
elements of both load and source. We
therefore have the situation shown in
figure ?? for complex source and load
impedances, ZS and ZL respectively.

ZS

ZL

AC Source

V

PL

I

Figure 13 : Maximum power transfer : AC case
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Maximum power transfer

We proceed by matching the resistive and
reactive elements of ZS and ZL
independently. Matching of the resistive
elements requires that (38) be satisfied, as
in the DC case. In addition, the reactive
elements of source and load need to
cancel each other out (i.e. be of equal
magnitude but opposite sign). We therefore
have the following requirement for
maximum power transfer in the RF case :

RS + jXS = RL − jXL (39)

Or, more simply :

ZS = Z∗L (40)

Where ∗ indicates the complex conjugate.

ZS

ZL

Z∗S Z∗L
AC Source

V

Matching
Network

Figure 14 : Maximum power transfer : with
impedance matching
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Reflection coefficient

Given a "normalised" arbitrary impedance,
z = r + jx, we can define the reflection
coefficient as[7]:

Γ =
z − 1
z + 1

=
(r − 1) + jx
(r + 1) + jx

(41)

and conversely :

z =
1 + Γ

1− Γ
(42)

In terms of normalised admittance, i.e.
y = g + jb where y = 1/z we can write:

Γ =
1− y
1 + y

=
(1− g)− jb
(1 + g) + jb

(43)

and conversely:

y =
1− Γ

1 + Γ
(44)

Re(ΓL)

Im(ΓL)

|ΓL| = 1

Unit circle containing
all passive impedances

Figure 15 : Cartesian coordinate system on the
reflection coefficient (Γ) plane

© Poole-Darwazeh 2015 Lecture 1 - Introduction Slide37 of 55



Return loss

Return loss is the loss of power in the signal returned/reflected by a discontinuity. A
discontinuity typically occurs where there is a mismatch between two impedances in a
transmission line system.
Return loss is usually expressed in decibels (dB) as a log of the ratio of two powers, as
follows:

RLdB = 10 log10
Pi
Pr

(45)

The relationship between reflection coefficient and return loss can be found by applying
the definition of reflection coefficient:

RLdB = −10 log |Γ|2 = −20 log |Γ| (46)

Description Load |Γ| % of power VSWR Return Loss
Impedance reflected

Perfect match Zo 0 0 1.00 -∞
Fairly good match ' Zo 0.03 0.1% 1.06 −31dB
Poor match 2× Zo or 0.5× Zo 0.33 11% 2.00 −9.5dB
Very poor match 10× Zo or 0.1× Zo 0.82 67% 10.00 −1.7dB
Open circuit ∞ 1.00 100% ∞ 0
Short circuit 0 1.00 100% ∞ 0
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dBm

I Due to the extremely wide range of
power levels in microwave systems,
ranging from picowatts (10−12 W) to
gigawatts (109 W), it is more
convenient to represent power on a
logarithmic scale in units of ’dBm’,
being defined as the ratio of the power
level, in milliwatts, to one milliwatt, i.e.
:

P(dBm) = 10 log10
(
P(mW)

1mW

)
(47)

I One milliwatt is chosen as the
reference level simply because many
of the systems of interest are operating
with powers of this order of magnitude.

I Any powers quoted in dBm are
assumed to be referenced relative to a
50 Ω system impedance. If this is not
the case then it needs to be stated.

Table 6 : dBm versus milliwatts

Power (mW) Power (dBm)
1 µW -30 dBm
5 µW -23dBm
10 µW -20 dBm
0.1 mW -10 dBm
0.5 mW -3 dBm
1 mW 0 dBm
2 mW 3 dBm
10 mW 10 dBm
100 mW 20 dBm
200 mW 23 dBm
1 W 30 dBm
1 kW 60 dBm
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Quality factor, Q
Energy loss occurs in all real passive components, including reactive components such
as capacitors and inductors.

These components can be represented as resonant circuits at microwave frequencies,
where energy is being exchanged back and forth between inductive and capacitive
energy storage elements of the equivalent circuit and some of the energy is being ’lost’
in parasitic resistances.

Given the presence of real-world losses, we can define a measure of Quality, or "Q" for
any such equivalent circuit as follows :

Q =
energy stored

average power dissipated
(48)

Higher Q indicates a lower rate of power loss in the circuit relative to the energy stored.

The stored energy is the sum of energies stored in all the lossless reactive elements
(inductors and capacitors), whereas the energy dissipated is the sum of the energies
lost in all the resistive elements per cycle. In other words, a circuit containing only ideal
reactive elements would have an infinite Q.

Real world components and circuits all exhibit some electrical losses and therefore
have a finite Q. In the case of individual reactive components such as capacitors and
inductors, the higher the Q the closer the component approaches the ideal.
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Q of series combinations

X

Rs

Q =
X
Rs

(a)

L

Rs

Q =
ωL
Rs

(b)

C

Rs

Q =
1

ωCRs

(c)

Figure 16 : Q of series combinations

The peak energy stored in the inductor in figure 16(b) is ½LI2, whereas the energy
dissipated in the resistor in one cycle, T , is equal to ½I2RsT =½I2Rs(1/fo). Hence:

Qs = 2π
1
2LI

2
max

1
2 I

2
maxR (1/f)

=
ωoL
R

(49)

For figure 16(c) an equivalent expression to (49) as :

Qs = 2π
1
2 I

2
max/ω

2
oC

1
2 I

2
maxRs (1/f)

=
1

ωoCRs
(50)
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Q of parallel combinations

X Rp

Q =
Rp
X

(a)

L Rp

Q =
Rp
ωL

(b)

C Rp

Q = ωCRp

(c)

Figure 17 : Q of parallel combinations
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Q of RLC circuits

We will now extend the above analysis to the series LCR circuit shown in figure 18(a).

I At resonance the stored electrical energy in the series RLC circuit is being
exchanged back and forth between the inductor and the capacitor once each cycle.

I When the energy stored in the capacitor is at a maximum, the energy stored in the
inductor is zero and vice versa.

C L R

(a) Series RLC circuit

G = 1/R

L

C

(b) Parallel RLC circuit

Figure 18 : RLC circuits
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Q of RLC circuits

We can therefore use either (49) or (50) to calculate the Q of a series RLC circuit, as
both these expressions will yield the same result, so for the circuit in figure 18(a) we
have :

Qs =
ωoL
R

=
1

ωoCR
(51)

At resonance, the net reactance of a series RLC circuit is zero, so the impedance of the
circuit in figure 18(a) at resonance is simply R, which is the lowest value of impedance
obtainable for this circuit at any frequency.

The parallel RLC circuit of figure 18(b) can be considered as the dual of figure 18(a). In
other words the net susceptance is zero at resonance so the admittance is simply 1/R,
which is the lowest value of admittance obtainable for this circuit at any frequency.
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Q and resonance

I A graph of Y/Yo versus frequency is
shown in figure 19.

I The half-power points are indicated on
figure 19, being the frequencies,
labelled ω1 and ω2, either side of ωo,
where Y/Yo falls to a value of 0.707 of
its value at resonance.

I The distance between ω1 and ω2 is
called the half-power bandwidth of the
circuit, or ∆ω.

I These parameters are related to Q by
the following, which also serves as
another working definition of Q for a
resonant circuit[5]

:

Q =
ωo
∆ω

=
fo

∆f
(52)

ω1 ωo ω2

0

0.2

0.4

0.6

0.8

1

Low Q

High Q∆ω

0.707

Frequency (ω)
Y Y o

or
Z Z o

Figure 19 : Resonant frequency and Q
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Q of series versus parallel circuits
For every series combination in figure 16, at a given frequency, there is an equivalent
parallel combination, and vice versa. The ability to convert between series and parallel
representations is important in network design. This is accomplished as follows:
Consider the circuit of figure 16(a). We can write the admittance as :

Y =
1

Rs + jX
(53)

=
Rs − jX
R2
s + X2 (54)

=
Rs

R2
s + X2 − j X

R2
s + X2 (55)

Which can be rewritten as :

Y =
1/Rs

Rs

[
1 +

(
X
Rs

)2
] +

1/X

j
[(

Rs
X

)2
+ 1
] (56)

In terms of the Q of the series circuit of figure 16(a), Qs, we can write :

Y =
1

Rs(1 + Q2
s )

+
1

jX
[ 1
Q2

s
+ 1
] (57)
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Q of series versus parallel circuits
So, from (57) we can see that the series combination of figure 16(a) is equivalent to the
parallel combination in figure 17(a), where the parallel elements (conductance and
susceptance) are :

G =
1

Rs(1 + Q2
s )

(58)

B =
−Q

Rs(1 + Q2
s )

(59)

Since the conductance, G, in (58) is the reciprocal of the equivalent parallel resistance,
Rp, we can state the following relationship between Rs and Rp :

Rp = Rs(1 + Q2
s ) (60)

Which implies that Rp will always be greater than Rs for any Qs > 0, as one would
expect. Re-arranging (60), we obtain the following useful formula for the Q of a
resonant circuit in terms of series and parallel resistances that will pop up repeatedly in
different forms throughout this book and especially in chapter ??, where we introduce
matching network design:

Qs =

√(
Rp
Rs

)
− 1 (61)
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Loaded Q and External Q
I So far we have analysed RLC circuits in isolation, but in the real world these

circuits are usually embedded in a larger system.
I At the very least, our RLC circuit must be connected to a source and a load, both

of which will contain their own resistive elements.
I When a resonant circuit is connected to the outside world, the total losses, for the

purpose of calculating Q, will have to include losses in the source and load
resistances.

I A typical situation where a parallel RLC resonant circuit is connected to a source,
RS and load, RL, is shown in figure 20.

vs

RS

RLL R C

Figure 20 : Parallel RLC circuit with source and load
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Loaded Q and External Q
The loaded Q may be determined by considering the overall Q of the entire circuit with
external lossy elements taken into account, in other words, considering only the energy
stored in the capacitor :

QL =
total susceptance
total conductance

=
ωoC
Gtotal

=
ωoC

Gs + G + GL
(62)

Where : Gs = 1/Rs, G = 1/R and GL = 1/RL,
I We could use an equivalent expression by considering only the energy stored in

the inductor and the results will be the same. We can immediately see, from (62),
that any finite values of GS and GL will have the effect of reducing the overall value
of Q.

I This concurs with our intuitive understanding that the loaded Q of a passively
loaded circuit can never be higher than its unloaded Q, since the addition of
external passive circuit elements can only serve to add losses.

I Another way of considering loaded Q is to introduce the concept of external Q,
which represents the effect of all the elements that are not intrinsic to the
’unloaded’ resonant circuit.

I Unloaded Qu and external Qe are combined together to give the loaded QL of the
circuit according to the following general equation[2]:

1
QL

=
1
Qu

+
1
Qe

(63)
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Q of a one-port resonator
The input impedance of the resonator in
figure 21 at a single frequency, ω, is given
by:

Zin = R + jωL− j 1
ωC

(64)

Which can be re-written in terms of the
resonant frequency, ωo, as :

Zin = R + jẐo

(
ω

ωo
−
ωo
ω

)
(65)

where Ẑo is a parameter we will refer to as
the characteristic impedance of the
resonator defined by:

Ẑo =

√
L
C

(66)

and ωo is the nominal resonant frequency
defined by:

ωo =
1
√
LC

(67)

Vs

Zo
C L

R

Zin, Γin

Resonator

Figure 21 : One-port RLC resonator
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Q of a one-port resonator

We have written Zin in the form of (65) in order to emphasise the fact that Zin reduces to
simply R when ω = ωo. The input reflection coefficient of the resonator of figure 21 at
the frequency, ω, can be calculated from (41) as :

Γin =
Zin − Zo
Zin + Zo

(68)

Applying (65) we get:

Γin =

R − Zo + jẐo

(
ω

ωo
−
ωo
ω

)
R + Zo + jẐo

(
ω

ωo
−
ωo
ω

) (69)

Γin =

(
R − Zo

Ẑo

)
+ j
(
ω

ωo
−
ωo
ω

)
(
R + Zo

Ẑo

)
+ j
(
ω

ωo
−
ωo
ω

) (70)
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Q of a one-port resonator

The various Q factors for the circuit in figure 21 are defined as :

Unloaded Q :

Qu =
ωoL
R

=
1
√
LC
·
L
R

=

√
L
C
·
1
R

=
Ẑo
R

(71)

External Q :

Qe =
ωoL
Zo

=
1
√
LC
·
L
Zo

=

√
L
C
·
1
Zo

=
Ẑo
Zo

(72)

Loaded Q :

QL =
ωoL

(R + Zo)
=

Qu
(1 + Zo/R)

=
RQu

(R + Zo)
=

Ẑo
(R + Zo)

(73)

© Poole-Darwazeh 2015 Lecture 1 - Introduction Slide53 of 55



Q of a one-port resonator
By combining (71), (72), (73) with (63) we can now write (70) in terms of the various Q
factors as follows:

Γin =

( 1
Qu
−

1
Qe

)
+ j
(
ω

ωo
−
ωo
ω

)
( 1
Qu

+
1
Qe

)
+ j
(
ω

ωo
−
ωo
ω

) (74)

I Equation (74) is a universal expression for the input reflection coefficient of any
microwave resonator in terms of the resonant frequency and he two Q factors Qu
and Qe.

I The utility of equation (74) lies in the fact that these parameters can usually be
more easily measured than the fundamental components R, L and C, especially in
the case of metal cavities and dielectric resonators, where R, L and C do not exist
as discrete physical entities.

From (74), the squared magnitude of the input reflection coefficient is given by :

|Γin(ω)|2 =

( 1
Qu
−

1
Qe

)2
+

(
ω

ωo
−
ωo
ω

)2

( 1
Qu

+
1
Qe

)2
+

(
ω

ωo
−
ωo
ω

)2 (75)
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